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Driven electron transfer in an environment with slow and fast degrees of freedom
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Driven electron transfer in a polar medium with slow and fast degrees of freedom is studied in the frame-
work of a spin-boson Hamiltonian. Evolution dynamics is rigorously found whenvc

s/(G(a))AErs /kT!1,
wherevc

s is the Debye cutoff frequency in the spectral function for the slow modes,Ers is the reorganization
energy of slow degrees of freedom, andG21(a) is the reaction time dependent on the laser intensity parameter
a5mE0 /\v. Herev andE0 are the frequency and the amplitude of acw electric field, andm is the electron
dipole moment difference between the initial and final states. The master equation is derived for an arbitrary
driving force affecting both the transition matrix element and the potential energy. For acw electric field, the
time dependent probability of staying at the product state,P1(t), is shown to be strongly dependent on the field
intensity parametera: P1(a,t);(Gm1 ,m2

t)2Er f /Ers or P1(a,t);(Gm0
t)2Er f /Ers, double or single resonances,

respectively. HereEr f is the reorganization energy of fast degrees of freedom,Gm1 ,m2
;Jm1

2 (a)1Jm2

2 (a), and
Gm0

;Jm0

2 (a), whereJ(a) is a Bessel function. By changing the parametera, one is able to manipulate the rate
and direction of the reaction. WhenJm0

2 (a) is close to zero the reaction is slow. Hence, slow modes turn out
to be fast. This changes the character of the evolution dynamics from non- to mono- exponential decay,
respectively. For the double resonance, the equilibrium constant is studied with the field intensity. It is shown
that the reaction is almost insensitive to temperature. However, it strongly depends on the reaction heat, which
provides a condition for the resonance.

DOI: 10.1103/PhysRevE.63.016104 PACS number~s!: 05.30.2d, 05.40.2a, 82.20.2w, 73.40.Gk
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I. INTRODUCTION

Recent experimental studies of electron transfer dynam
in solution@1–13# and proteins@14–20# established ultrafas
time scales in the region,100 fs. For such fast reaction
one expects that nuclear relaxation processes become e
tial. An ordinary description based on the transition st
theory @21–24#, the variational transition state theory@25–
27#, the Kramers-Grote-Hynes approach@28–32#, or non-
adiabatic transition described by the Golden Rule@33–35# is
questionable@36–38# in the non-equilibrium environment
Relaxation dynamics of the bath modes should be taken
account. The bath relaxation can be considered by a
different approaches. Marcus and co-workers@39,40# pro-
posed a phenomenological picture of slow mode dynam
The Markovian description of the dynamical system rela
ation is valid for times longer than the correlation time of t
bath. For shorter times a microscopic approach is neces
Hornbachet al. @41# employed a description based on a m
croscopic spin-boson Hamiltonian for electron transfer
slow solvents. For some solvents, both slow and fast mo
affect the electron transfer@42#. Consequently, dynamics be
comes essentially non-exponential@43# under the following
assumptions:

vc
s

G
AErs

kT
!1, ~1!

*Electronic address: yurid@uwyo.edu
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wherevc
s is the Debye cutoff frequency in the spectral fun

tion for the slow degrees of freedom,Ers is the reorganiza-
tion energy of the slow degrees of freedom, andG21 is the
typical reaction time. It has been assumed that clear sep
tion between slow and fast degrees of freedom takes pl
However, this is not always so. There exists a coupling
tween slow and fast modes. Such a coupling is not con
ered in this work. In general, slow bath dynamics was st
ied by many authors: Chandler and Wolynes@44,45#,
Carmeli and Chandler@46#, and Coalson@47# were mostly
interested in thermodynamic properties. Coalson@48,49#
considered a spectroscopic form of a spin-boson Ham
tonian. Evanset al. @50# numerically analyzed spectroscop
data @5–11# of electron transfer in mixed-valence com
pounds. As shown in Ref.@43#, at longer times the transition
probability, P(t), for the activationless reaction can be d
scribed by the power law evolution:

P~ t !;t2Er f /Ers, ~2!

where Er f is the reorganization energy of the fast mode
Such a dependence is essentially non-exponential. Hence
dynamics cannot be presented as a two exponential pro
either.

Recent theoretical studies of long-range electron tran
driven by a laser present opportunities to manipulate
reaction—accelerating, decelarating, or even changing a
rection of the transfer process. Indeed, as shown in Ref.@51#,
the reaction rate exhibits giant resonances depending u
the laser intensity. Different types of manipulation by a dr
ing force were demonstrated in Refs.@52–54#. Driven ET in
©2000 The American Physical Society04-1
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JENNIFER L. CASH AND YURI DAHNOVSKY PHYSICAL REVIEW E63 016104
a stochastic medium was investigated in Refs.@55,56#. Nu-
merical methods were developed in Refs.@57–59#. Recently,
electric field modulation of the transition matrix element h
also been considered@60,61#. In this work, we continue to
study the effect of a strong time-dependent electric field
electron tunneling in a polar solvent. However, we exte
the previous analysis to the case when both slow and
degrees of freedom are presented in a solvent.

To describe microscopic the dynamics of the electron t
neling, we employ the approach based on the spin-bo
Hamiltonian@62–64#:

ĤSB52
1

2
\Dŝx2

1

2
eŝz1

1

2 (
k

S pk
2

mk
1mkvk

2qk
2D

1
1

2
ŝz(

k
gkqk , ~3!

where the set of oscillators$k% of mass$mk% and frequency
$vk% represents the slow and fast environment,$gk% are cou-
pling constants in the electron-boson interaction, ande is the
energy difference between the minima of the initial and fi
electronic states~the reaction heat!. The electronic state as
sociated with theu1& eigenstate ofŝz ~with eigenvalue11)
shall be designated as the donor electronic state. The o
electronic base state is then the acceptor state. A trans
between two states is due to the first term in the Hamilton
with the transition matrix elementD. As usual@51,52,64#, we
introduce an electric field into the Hamiltonian with the fo
lowing term:

Ĥ f52
1

2
mE~ t !ŝz , ~4!

wherem is the dipole moment difference between the don
and acceptor states, andE(t) is the external electric~laser!
field. Thus, the final Hamiltonian is given by

Ĥ5ĤSB1Ĥ f . ~5!

Experimentally, strong field effects can be observed in lo
range electron transfer. Larger tunneling distances bec
vitally important so that the breakdown threshold for t
electric field in dielectrics is not exceeded. According to
timations made in Refs.@65–67#, the breakdown threshold i
about 1062107 V/cm. Consequently, the electron tunnelin
range should be larger than 15217 Å @52,53#. Thus, pri-
mary long-range electron transfer in bacterial photosynth
centers is a good candidate for the experimental observa
of strong field effects in chemical dynamics. Indeed, the p
mary ET is rather fast in order to satisfy condition my~1!,
and the electron tunneling distance is larger than
217 Å @68#. Interestingly, there are some other materi
where an electron tunneling distance is even larger,}40 Å
@69#. We assume that the environment for these reacti
contains slow modes. Thus, the incorporation of slow b
dynamics into the consideration of driven electron trans
becomes important. Here, one expects the electron tran
kinetics to be non-exponential. Slow and fast relaxation w
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experimentally observed in some alcohols. For instance,
cording to Huppert and co-workers@42#, solvation relaxation
in hexanolcan be approximated by two exponents with t
Debye relaxation timest f52 ps andtsl533.3 ps.

As mentioned above, the electric field can decelerate
reaction. If the reaction rate becomes much smaller than
Debye cutoff frequency, inequality~1! is no longer valid.
Slow modes turn out to be fast. Consequently, the reac
reveals mono-exponential evolution.

In this work we consider how a time-dependent elect
field changes the dynamics of electron transfer in a po
environment~e.g., solvent!, which contains both slow and
fast degrees of freedom. The paper is organized as follo
in Sec. II we present the theory which allows us to derive
master equation for the transition probability for the electr
to be in the donor state. In Sec. III we studyP(t) for high
temperatures and different values of the parameters. In
IV we discuss and conclude.

II. A TIME-DEPENDENT PROBABILITY

The most rigorous approach used to describe n
adiabatic electron transfer is based on an analysis of
problem in the framework of spin-boson Hamiltonian E
~5!. The transition probability can be found as an exact f
mal expansion with respect to the value of a transition ma
elementD @62#, which, in our case, is modified by the driv
ing force ~see functionF4 below! @64#

P~ t !5 (
n50

` S 2
D2

2 D n

(
$h j 561%

E
0

t

dt2nE
0

t2n
dt2n21•••E

0

t2
dt1

3F~ t1 ,t2 , . . . t2n ;h1 ,h2 , . . .hn ;e,E!, ~6!

where

F5F1•F2•F3•F4 , ~7!

F1[expF2(
j 51

n

Sj G ,

F2[expF2 (
k51

n

(
j 5k11

n

h jhkL jkG ,

F3[ )
k51

n21

cosF (
j 5k11

h jXjkG ,
F4[cosF (

j 51

n

h j~~ t2 j2t2 j 21!e1V~ t2 j !2V~ t2 j 21!2Xj 0!G ,

~8!

and

Sj[Q2~ t2 j2t2 j 21!,

L jk[Q2~ t2 j2t2k21!1Q2~ t2 j 212t2k!2Q2~ t2 j2t2k!

2Q2~ t2 j 212t2k21!,
4-2
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Xjk[Q1~ t2 j2t2k11!1Q1~ t2 j 212t2k!2Q1~ t2 j2t2k!

2Q1~ t2 j 212t2k11!. ~9!

Furthermore,Q1(t), Q2(t), andV(t) are defined as follows

Q1~ t !5
1

\pE0

`

dv
Js~v!1Jf~v!

v2 sin~vt !, ~10!

Q2~ t !5
1

\pE0

`

dv
Js~v!1Jf~v!

v2 @12cos~vt !#cothS \v

2kTD ,

~11!

V~ t !5mE
0

t

E~t!dt. ~12!

HereJs(v) andJf(v) are the spectral densities of the slo
and fast degrees of freedom, respectively@62#:

Js, f~v!5
p

2 (
k

~gk
s, f !2

mk
s, fvk

s, f
d~v2vk

s, f !. ~13!

J(v) can be expressed through the dielectric loss function
slow and fast polar modes~see, e.g., Refs.@51,70#!:

Js, f~v!5
pErs, f

2

Imes, f~v!/@vues, f~v!u2#

E
0

`

dvImes, f~v!/~vues, f~v!u2!

,

~14!

where the reorganization energy of the slow or fast mode
determined from the following equation@71#:

Er
s, f5

1

4p2E dvuDDs, f~r !u2
•E

0

`

dv
Imes, f~r ,v!

vues, f~r ,v!u2
.

~15!

Here, Imes, f(r ,v) is the imaginary part of the dielectri
function, es, f(r ,v) of the slow or fast modes, respectively

DDs, f~r ![DA
s, f~r !2DD

s, f~r ! ~16!

is the difference between the induction vectors at the acc
tor and donor sites@71#. For the Debye spectrum, the diele
tric loss function takes the following form@71#:

Imes, f~v!

ues, f~v!u2
5S 1

e0
2

1

e`
D • v/vc

s, f

11~v/vc
s, f !2

. ~17!

e0 ande` stand for the optical and static dielectric consta
respectively;vc

s, f51/tL
s, f , where tL

s, f are the longitudinal
Debye relaxation times of slow or fast polar dipoles. Slo
and fast mode dynamics implies that

vc
s

vc
f
!1, ~18!
01610
f

is

p-

,

D

vc
s

@1, ~19!

and

D

vc
f
!1. ~20!

The experiments of Huppert and co-workers@42# indicate the
existence of solvents with two relaxation times. Equatio
~19! and ~20! allow one to compare the dynamics of th
coherent electron motion with relaxation of the slow and f
degrees of freedom. In the former case, the electron co
ence frequency is much faster than the Debye cutoff
quency of the slow motion. For the fast modes, the oppo
condition takes place. According to@62#, inequality~20! jus-
tifies the non-interacting blip approximation~NIBA !, which
results in exponential dynamics with the rate constant de
mined by the Golden Rule expression@62#. As in Ref. @23#,
we apply the NIBA only to the fast degrees of freedo
However, the slow bath approximation introduced in R
@41# is employed to the slow solvent modes. The NIBA a
sumes that the relaxation of the fast modes is so fast tha
electron transitions~blips! between two electron levels ar
not correlated in time@62#. Consequently, only the first term
contributes to the functionL i j in Eq. ~9!

Q2
f ast~ t2 j2t2 j 21![G2~ t2 j2t2 j 21!. ~21!

The same is true for the termF3 in Eq. ~9!:

Q1
f ast~ t2 j2t2 j 21![G1~ t2 j2t2 j 21!. ~22!

An analysis of the slow modes is different@41,72#. All terms
with different time intervals must be included. If the time
observation is much smaller than the relaxation time of
slow modes and much longer than the reaction time~see
inequality ~1!!, one can expand the functionsQ1

slow(t) and
Q2

slow(t) with respect to the small parameter (tvc
s). Accord-

ing to Refs.@41,70,72# one finds that

Q1
s~ t !5

Er
s

\vc
s
@ tvc

s2 1
2 ~ tvc

s!2#,

~23!

Q2
s~ t !5

Er
skTt2

\2
5S t

t0
D 2

,

wheret0 is the blip relaxation time defined as follows:

t0[
\

AEr
skT

. ~24!

In the previous derivation, we have assumed that~a! the
temperature is high

vc
s!kT, ~25!
4-3
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and ~b! Js(v) is described by the Debye spectral functi
~17!. In approximation~23! the functionsSj

s , L jk
s , andXjk

s

~defined by Eqs.~9!! are now quadratic functions of time:

Sj
s5

~ t2 j2t2 j 21!2

t0
2

[
t j

2

t0
2

,

L jk
s 5

2

t0
2 ~ t2 j2t2 j 21!~ t2k2t2k21![

t jtk

t0
2

, ~26!

Xjk
s 5

Er
svc

s

\
~ t2 j2t2 j 21!~ t2k112t2k![

Er
svc

s

\
t j sk ,~ j .k!

where

t j[t2 j2t2 j 21 ,
~27!

sk[t2k112t2k

are the lengths of thej th blip andkth sojourn, respectively
CombiningQ1,2

s, f from Eqs.~21!, ~22!, and ~26!, and substi-
tuting them into the total expression forSj , L jk , andXjk ,
one obtains the following expression for the time-depend
probability difference:

P~ t !5 (
n50

` S 2
D2

2 D n

(
$h j 561%

E
0

t

dt2nE
0

t2n
dt2n21•••E

0

t2
dt1

3expS 2(
j 51

n

G2~ t2 j2t2 j 21!2
L1

2

t0
2 D

3cos@~e2Er !L12h1G1~ t22t1!#

3 )
k51

n21

cosFvcErLk11sk1 (
j 5k11

n

h jG1

3~ t2 j2t2 j 21!d j 21,kG , ~28!

whereLk is defined as follows@72#:

Lk[(
j 5k

n

h jt j .

~29!
~$h j561%!.

For short times the following condition is valid:

vcErLk11sk!1. ~30!

Equation~30! is equivalent to inequality~1! when the param-
etersLk11 andsk are estimated as follows:

Lk11't05
\

AEr
skT

, ~31!

sk&~G!21. ~32!
01610
nt

Lk11 should be comparable to the typical length of the bl
t0, while sk must be smaller than the reaction time. This tim
is rather short, since the reaction is considered to be
relative to the relaxation time of the slow modes. Conditi
~30! essentially simplifies calculations of series~28!.

To find the multiple sum over the Ising indicesh j561
we exploit the following integral representation:

expF2
~( jh jt j !

2

t0
2 G5

1

pE2`

`

dx

3exp~2x2!cosS 2x

t0
(

j
h jt j D .

~33!

This integral transformation allows one to substitute t
Gaussian exponent by a linear one. The time depend
probability, P(t), can be presented in the following form:

P~ t ![
1

Ap
E

2`

`

dx exp~2x2!P~x,t !, ~34!

where the partial probability,P(x,t), is defined as follows:

P~x,t !5 (
n50

` S 2
D2

2 D n

(
$h j 561%

E
0

t

dt2nE
0

t2n
dt2n21•••E

0

t2
dt1

3expS 2(
j 51

n

G2~ t2 j2t2 j 21!D
3cosF S (

j 52

n

h j

e~x!

\
~ t2 j2t2 j 21!1V~ t2 j !

1V~ t2 j 21!D 1h1S e~x!

\
~ t22t1!1V~ t2!2V~ t1!

2G1~ t22t1! D G )
k51

n21

cos@hkG1~ t2k
2t2k21!#. ~35!

Here the random reaction heat stands for

e~x![
2\x

t0
1e2Ers . ~36!

In Eq. ~35! we have used the parity of the Gaussian distrib
tion. Thus, cosines with1x and 2x contribute equally. In
Eq. ~35! we have chosen cosine with1x.

By making use of the following transformation

(
$h j 561%

cosFA(
j

h jt j G5 (
$h j 61%

)
i 51

n

cos@Ah jt j #

52n)
i 51

n

cos~At j !, ~37!

one obtains the following series forP(x,t):
4-4
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P~x,t !5 (
n50

` S 2
D2

2 D nE
0

t

dt2nE
0

t2n
dt2n21•••E

0

t2
dt1

3F)
j 51

n

g~x;t2 j ,t2 j 21!

1h~x;t2 ,t1!)
j 52

n

g~x;t2 j ,t2 j 21!G , ~38!

where the functiong(x;t2 j ,t2 j 21) andh(x;t2 j ,t2 j 21) are de-
fined as follows:

g~x;t2 j ,t2 j 21![exp@2G2~ t2 j2t2 j 21!#

3cosFe~x!

\
~ t2 j2t2 j 21!1V~ t2 j2V~ t2 j 21!#

3cos@G1~ t2 j2t2 j 21!#, ~39!

and

h~x;t2 j ,t2 j 21![exp@2G2~ t2 j2t2 j 21!#

3sinFe~x!

\
~ t2 j2t2 j 21!1V~ t2 j2V~ t2 j 21!#

3sin@G1~ t2 j2t2 j 21!#. ~40!

Series ~38! is equivalent to the solution of the followin
integro-differential equation for the partial probability de
sity:

dP~x,t !

dt
52D2E

0

t

h~x;t,t1!dt1

2D2E
0

t

g~x;t,t1!P~x,t1!dt1 . ~41!

As in Refs.@51–53#, we only study acw electric field:

E~ t !5E0cos~vt !. ~42!

Thus,V(t) defined by Eq.~12! is given by

V~ t !5a sin~vt !, ~43!

where the intensity parametera is defined as follows:

a[
mE0

\v
. ~44!

To find the solution of Eq.~41! with field ~42!–~43!, one
employs the following useful identity@73#:

exp@a sin~vt !#[ (
m5`

`

Jm~a!exp~ imvt !. ~45!

We seek for the solution of Eq.~41! by making use of the
Laplace transform:
01610
P~x,l!5E
0

`

dt exp~2lt !P~x,t !. ~46!

Hence the Laplace image,P(x,l), can be determined from
the following equation:

lP~x,l!2152
D2

2i E0

`

dt1exp~2lt1!E
0

t1
dt2

3exp@2G2~ t12t2!#sin@G1~ t12t2!#

3 (
n,m52`

`

Jn~a!Jn1m~a!FexpS i S e~x!

\
1mv D

3~ t12t2!1 invt1D2c.c.G2
D2

2 E
0

`

dt1

3exp~2lt1!E
0

t1
dt2exp@2G2~ t12t2!#

3cos@G1~ t12t2!#3 (
n,m52`

`

Jn~a!Jn1m~a!

3FexpS i S e~x!

\
1mv D ~ t12t2!1 invt1D

1c.c.GP~x,t2!. ~47!

The structure of integral~47! can be presented in the follow
ing way:

E
0

`

dt1exp~2lt1!E
0

t1
dt2F~ t12t2!5

F~l6 inv!

l6 inv
,

~48!

or

E
0

`

dt1exp~2lt1!E
0

t1
dt2G~ t12t2!P~x,t2!

5G~l6 inv!P~x,l6 inv!. ~49!

For mÞ0 andl→0 ~a long time asymptotic!, one can safely
neglectl. Indeed integral~48!

E
0

`

dt1exp~2lt1!E
0

t1
dt2F~ t12t2!5

F~6 inv!

6 inv
~50!

is finite. Being multiplied by the small factor

S D

v D 2

, ~51!

the function in Eq.~50! provides a negligible contribution
compared to unity in Eq.~47!. Thus, the only term which is
essential in this equation is the one withm50. A similar
analysis can be made for the second integral term in Eq.~47!
~see also Eq.~49!!. One can show, by employing iteration
that all terms withP(x,l6 inv) are only corrections of or-
4-5
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der (D/v)2 to P(x,l). Thus, keeping all the terms withm
50, we obtain the following solution forP(x,l):

P~x,l!5
12h~x,l!/l

l1g~x,l!
, ~52!

whereh(x,l) andg(x,l) are given by

h~x,l![D2 (
n,m52`

`

Jn
2~a!E

0

`

dt exp@2lt2G2~ t !#

3sinFe~x!

\
t Gsin@G1~ t !#sin~nvt !, ~53!

g~x,l![D2 (
n,m52`

`

Jn
2~a!E

0

`

dt exp@2lt2G2~ t !#

3cosFe~x!

\
t Gcos@G1~ t !#cos~nvt !. ~54!

For smalll ~or long times!

h~x,l→0![h0~x!,

g~x,l→0![g0~x!. ~55!

Consequently,P(x,t) is found to be

P~x,t !52
h0~x!

g0~x!
1F11

h0~x!

g0~x!Gexp@2g0~x!t#. ~56!

Employing the identity@73#

(
n,m52`

`

Jn
2~a!exp~ inv!5J0S 2a sin

vt

2 D , ~57!

one can collect series~53! and ~54!, resulting in the follow-
ing equations forh0(x) andg0(x):

h~x,l!5D2E
0

`

dt J0S 2a sin
vt

2 Dexp@2lt2G2~ t !#

3sinFe~x!

\
t Gsin@G1~ t !#sin~nvt !; ~58!

g~x,l!5D2E
0

`

dtJ0S 2a sin
vt

2 Dexp@2lt2G2~ t !#

3cosFe~x!

\
t Gcos@G1~ t !#cos~nvt !. ~59!

The final expression for the time-dependent probability
finding the electron at the donor state takes the follow
form:
01610
f
g

P1~ t !5
1

2
@11P~ t !#5

1

2Ap
E

2`

`

dx exp~2x2!

3Fg0~x!2h0~x!

g0~x!
1

g0~x!1h0~x!

g0~x!
exp@2g0~x!t#G ,

~60!

wheree(x), h0(x), andg0(x) are determined by Eqs.~36!,
~58!, and~59!, respectively.

Equation ~60! is the general solution for the transitio
probability when both slow and fast degrees of freedom
taken into consideration. In Sec. III we shall study particu
solutions of Eq.~60! at high temperatures.

III. A HIGH TEMPERATURE LIMIT

In this section we shall analyze some important particu
solutions of Eqs.~58!–~60!, restricting ourselves to a high
temperature limit for both degrees of freedom:

\vc
s, f!kT. ~61!

As usual~see Refs.@41,70,72#!, functionsG1(t) andG2(t),
defined by Eqs.~21! and ~22!, can be expanded into th
Taylor series. Keeping only linear terms forG1(t) and qua-
dratic terms forG2(t), one obtains

G1~ t !.
Er f

\
t,

G2~ t !.
Er f kT

\2
t2. ~62!

Thus, the integrals in Eqs.~58! and ~59! become Gaussian
and therefore can be calculated exactly:

h0~x!5
\D2

4
A p

Er f kT (
n,m52`

`

Jn
2~a!

3H expF2
~e~x!2Er f 2n\v!2

4Er f kT G
2expF2

~e~x!1Er f 2n\v!2

4Er f kT G J , ~63!

g0~x!5
\D2

4
A p

Er f kT (
n,m52`

`

Jn
2~a!

3H expF2
~e~x!2Er f 2n\v!2

4Er f kT G
1expF2

~e~x!1Er f 2n\v!2

4Er f kT G J . ~64!

The partial rate constant,g0(x), given by Eq.~64!, is a sum
of the infinite number of transitions with different activatio
energies in which the reaction heats are increased or
creased by an integer number of the photon energyn\v. The
4-6
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probability of each channel being turned on is determined
the factorJn

2(a). This coefficient is an oscillating function o
a. The Bessel function,Jn(a), can vanish at some particula
values of the intensity parametera5mE0 /\v, the roots of
the nth-order Bessel function~see Ref.@73#!. The ability to
change the channel probability becomes extremely impor
for manipulation, since theeffective channel~the channel
with the least activation energy! can be turned off. In this
situation the partial rate constant is significantly decrea
by many orders of magnitude~see Ref.@51#!.

We consider the two particular cases of resonances w
two or one exponents in series~63! and~64! vanish, resulting
in the largest contribution to the series:

~a! Let the resonance condition for two exponents ta
place ~i.e. there are simultaneous resonances for both
ward and backward reactive channels!:

e2Ers2Er f 5m1\v,
~65!

e2Ers1Er f 5m2\v.

Conditions~65! select only two exponents from infinite se
ries ~63! and ~64!. Other exponents in this series are exp
nentially small. Thus, the partial probabilityP1(x,t) takes a
simpler form:

P1~x,t !5
Jm2

2 ~a!

Jm1

2 ~a!1Jm2

2 ~a!
1

Jm1

2 ~a!

Jm1

2 ~a!1Jm2

2 ~a!

3expF2tGm1 ,m2
expS 2x2

Ers

Er f
D G , ~66!

whereGm1 ,m2
(a) is defined by the following equation:

Gm1 ,m2
[G0@Jm1

2 ~a!1Jm2

2 ~a!#

[
\D2

4
A p

Er f kT
@Jm1

2 ~a!1Jm2

2 ~a!#. ~67!

Finally, in order to obtain the transition probability, integr
~60! over x must be taken. However, sincee depends onx,
resonance conditions~65! are not exact for differentx. We
assume that the mismatch due to the fluctuation ofx is small
compared to\v, i.e.

\v

AErskT
@1. ~68!

If condition ~68! is satisfied, the resonances are still sha
Thus, one can safely neglect other exponents in Eqs.~63!
and ~64!, which results in the partial transition probabilit
described by Eq.~66!. To take Gaussian integral~60! over
the variablex, we employ the saddle point approximatio
used in Ref.@43#:
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P1~ t !.
Jm2

2 ~a!

Jm1

2 ~a!1Jm2

2 ~a!1Jm2

2 ~a!

1
Jm1

2 ~a!

Jm1

2 ~a!1Jm2

2 ~a!
A2/lnFErs

Er f
Gm1 ,m2

t G
3S Er f

eErs
D Er f /Ers

~Gm1 ,m2
t !2Er f /Ers. ~69!

This solution is valid provided@43#

Ers

Er f
~Gm1 ,m2

t !.1. ~70!

In accordance with Eq.~67!, Gm1 ,m2
(a) is strongly affected

by the field intensity. The dependence ofGm1 ,m2
(a) on a is

shown in Fig. 1.Gm1 ,m2
(a) never vanishes, although it sig

nificantly decreases fora.2. If Jm1

2 (a)50 ~i.e., the back-

ward reactive channel is turned off by the field!, P1(t) be-
comes completely independent of time~see Fig. 2!. When
Jm2

2 (a)50 ~for m250, a52.4); ~i.e., the forward reaction is

switched off!, the equilibrium distribution is shifted to the
products. ForJm1

2 (a)50 (m1521,a53.4), the reaction is

shifted to the reactants. Ata.1.45 the forward and back
ward reactions contribute equally; i.e., the electron transit
behaves like a symmetric reaction.

It is important to study the dependence of the equilibriu
distribution upon the field intensitya. According to Eq.~69!,
the equilibrium rate constant is defined in the following w
@74,75#:

Geq[
P2~a!

P1~a!
u t→`5

Jm1

2 ~a!

Jm2

2 ~a!
. ~71!

According to Eq.~71!, Geq varies from 0 tò , depending on
the values of the parametera. As shown in Fig. 3, when

FIG. 1. Dependence ofGm1m2
(a) upon the field intensity param

etera is given form1521 andm250.
4-7
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Jm1

2 (a)50, the reaction is shifted to the reactants.

Jm2

2 (a)50, the reaction is shifted to the products.

It is always useful to compare analytical solution~69!
with numerical calculations of integral~60!, with h0(x) and
g0(x) determined by Eqs.~63! and ~64!. The results are de
picted in Fig. 4. It is clearly shown that a perfect mat
occurs att>2310211 s. As expected, the asymptotic an
lytical solution fails at earlier times.

~b! Now we consider the single resonance case w
resonances occur only for the forward reaction, while
backward reaction is suppressed by a small activation ex
nent:

e2Ers2Er f 5m0\v,
~72!

ue2Ers1Er f 2m1\vu@AEr f kT•~m0Þm1!.

FIG. 2. Time dependence of the probabilityP1(t) of an electron
remaining at the donor state is presented for different values of
field intensity. For Er f 5Ers50.5 eV, e50, T5300 K, \v
51 eV, andG05331011 s21, the reaction dynamics is sensitiv
to the field intensity.

FIG. 3. Dependence ofGeq(a) upon the field intensity param
etera is given form1521 andm2520. The equilibrium constan
or the direction of the reaction can be manipulated by changing
amplitude of the driving force.
01610
n
e
o-

Inequality ~72! allows one to neglect all other exponents
series~63!–~64! except the resonance term. As in case~a!,
we exploit the saddle point method for the calculation
integral ~60! over the auxiliary variablex @43#. As a result,
the transition probability is given by@43#

P1~ t !.A2/lnFErs

Er f
Gm0

~a!t G
3S Er f

eErs
D Er f /Ers

~Gm0
~a!t !2Er f /Ers. ~73!

This solution is true provided@43#

Ers

Er f
~Gm0

~a!t !.1. ~74!

HereGm0
(a) stands for

Gm0
~a![G0Jm0

2 ~a!, ~75!

where G0 is defined by Eq. ~67!. If Jm0

2 (a)50, then

Gm0
(a)50. This might contradict inequality~74!. Conse-

quently, solution~73! is invalid. However, there is anothe
reason for the theory presented above to be questionab
small Gm0

(a). Validity condition ~1! can be violated for
small reaction rates. For this case, the inequality opposit
~1! takes place. The slow modes now become fast, relativ
the reaction time. Consequently, the reaction is mo
exponential. The exponential evolution was previously st
ied in Refs.@51,52#. Thus, by changing the field intensity, w
can even change the character of a time dependence. W
the intensity parameter is far from a zero of them0th-order
Bessel function, the dynamics is again non-exponential
the intensity parameter is close to one of the zeroes of
m0th-order Bessel function, the reaction dynamics becom
essentially mono-exponential. A 3D plot ofP1(t) on time t

e

e

FIG. 4. Time-dependence of the transition probability for t
reaction satisfying double resonance condition~65!. The solid line
is the numerical value of the integral in Eq.~60!; the dashed line is
the long time asymptotic described by Eq.~69!. The parameters are
chosen to beEr f 5Ers50.5 eV, a51.9, e50, T5300 K, m15
21, m250, \v51 eV, andG05331011 s21.
4-8



im
es
of

F

on
ee
s

d

ility
his
(
of

m
:

mall
i-
res,
a-
d the
the

l

a-

tes

lly
es

ve
er

n
s

en

he

-

ility

g. 2

DRIVEN ELECTRON TRANSFER IN AN ENVIRONMENT . . . PHYSICAL REVIEW E 63 016104
and the intensity parametera is presented in Fig. 5.P1(t) is
strongly dependent upon the intensity parameter. The t
decay becomes extremely fast when the resonance B
function (m0521) is approximately close to the maxima
the Bessel function (a52.4,5.5,8.7, . . . ). Thetransfer is ter-
minated at the zeroes of the resonance Bessel function.
m0521, the values of the intensity parameter area
53.8,7.0,10.2, . . . .

The reaction probability is very sensitive to the reacti
heat,e. Figure 6 demonstrates such a dependence. Ind
when resonance condition~72! is satisfied, the reaction i

FIG. 5. 3D picture of evolution for the transition probability i
the case of single resonance~72!. The decay with time become
extremely fast when the resonance Bessel functions (m0521) are
rather close to the maxima (a52.4,5.5,8.7 . . . ). Thereaction is
terminated at zeroes of the resonance Bessel function. Form05
21, a53.8,7.0,10.2, . . . . Thevalues of the parameters are chos
to be G053.731011 s21, \v51 eV, T5300 K, m0521, Er f

50.66 eV,Ers50.33 eV, ande50.

FIG. 6. Time dependence of the transition probability for t
reaction for the case of single resonance~72! at the different values
of the reaction heate. a52.4 while the values of the other param
eters remain the same as in Fig. 5.
01610
e
sel

or

d,

fast at sucha’s when Jm0

2 (a) is close to its maxima~here

m0521). For e521, the resonance condition is satisfie
again but now form050(J0(2.4)50). Consequently, the
electron transfer is terminated.

The temperature dependence of the transition probab
is one of the most important measurable characteristics. T
dependence, shown in Fig. 7 at the fixed values of timet
52.89 ps), turns out to be very weak. For a broad range
temperatures,P1(t) changes by less than 1%. The minimu
of P1(t) can be qualitatively explained in the following way
if the temperature is small, the fluctuations ofx are less pro-
nounced (t/\51/AErskT in Eq. ~36! is large!. Therefore,
the resonance discrepancy cannot be eliminated by s
fluctuations ofx. For a nonvanishing activation energy a d
rect temperature dependence is true. At higher temperatu
i.e. T5280 K, it becomes possible to eliminate the activ
tion mismatch. Hence, the resonance can be reached, an
reaction becomes activationless. For this type of reaction,
inverse temperature dependence is valid~the preexponentia
factor in g0(x)).

Besides the time-dependent part ofP1(t), we are inter-
ested in the equilibrium distribution of the reactants~see the
first term in integrand~60!!. Since the system is far from
equilibrium it is apparent thatPeq(e,a) should essentially
differ from a Gibbs’ distribution. There are two possible re
sons:~a! non-equilibrium dynamics of slow modes, and~b! a
time dependence of the driving force. Figure 8 demonstra
the dependence ofPeq on the reaction heate and the inten-
sity parametera. As expected, this dependence is essentia
non-linear. The equilibrium distribution of reactants chang
in the whole range of values from zero to one~i.e., products
to reactants!. At fixed values ofe, Peq(e,a) is an oscillating
function of a.

IV. DISCUSSION AND CONCLUSIONS

In this work we have studied an effect of an intensi
driving force on the transition probability of electron transf

FIG. 7. Temperature dependence of the transition probab
with the parameters close to the double resonance condition~see
Eq. ~65!!. The values of the parameters are the same as in Fi
excepta51.8, \v50.8 eV. The parameterG0 varies with tem-
perature in accordance with definitions~67! and ~75!.
4-9



e

i

r
th
in
n
h
rg
o

er
tly
s
tio
ee
r-
r
ar
ve
va

ffe
m

re
so

av
-

f

.

l
lity
e

n-

he

-
ap-

can
ing

to
the
en-

the

sen-

n-
ly

the
As
st
mis-
in

, a
-

he
nce,
.
i-

ts

JENNIFER L. CASH AND YURI DAHNOVSKY PHYSICAL REVIEW E63 016104
in a bath with well separated slow and fast degrees of fr
dom. Such separation can take place for some alcohols@42#
~e.g.,hexanol!. The electron dynamics has been analyzed
the framework of spin-boson Hamiltonian~3!, when condi-
tion ~1! \vc

s/(G(a))AErs /kT!1 is imposed. In fact, one
implies that the reaction is rather fast, much faster than
laxation of slow degrees of freedom. The expression for
time-dependent probability of the electron staying at the
tial state~see Eq.~60!! has been rigorously derived for a
arbitrary electric field, reaction heat, and temperature. T
time-dependent probability is asymmetric to the bare ene
bias, e. This effect is due to the fact that slow degrees
freedom are far from equilibrium. The expansion ofQ1

slow(t)
andQ2

slow(t) in Eq. ~23! with respect to the small paramet
(tvc

s) is the main assumption of the theory. Consequen
we have suggested that the relaxation time of slow degree
freedom is much larger than the observation and reac
times. This approximation implies that slow degrees of fr
dom will never reach equilibrium during the time of obse
vation; they are frozen. Even when the electron transfe
completed, the slow mode dipoles remain directed tow
the initial position of the electron. Apparently, the effecti
initial energy should be corrected to the value of the sol
tion energy of the slow modesErs , while the energy of the
acceptor state remains unchanged. Due to solvation e
@74–76#, only for the initial electron state does the syste
become asymmetric toe.

The main analysis has been made for high temperatu
In particular, we have studied two important cases of re
nances:~a! the double resonance with condition~65!; and~b!
the single resonance described by condition~72!. For both
cases, the long-time asymptotic analytical solutions h
been found. For case~a!, the time dependent probability con
sists of the two parts; the equilibrium probabilityPeq and the
time-dependent part itself. The latter, according to Eq.~69!,
is proportional to (Gm1m2

(a)t)2Er f /Ers, where Gm1m2
(a)

FIG. 8. 3D picture of the equilibrium distribution of reactan
depending on the reaction heat,e and the field intensitya. The
value of the parameter areG053.731011 s21, \v51 eV, Er f

50.66 eV,Ers50.33 eV, andT5300 K.
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5G0(Jm1

2 (a)1Jm2

2 (a)) ~see Eq. ~67!!. The dependence o

G21,0(a) on the intensity parametera is presented in Fig. 1
The value ofGm1m2

decreases ata>2. As shown in Fig. 2,

P(t) is very sensitive to the field intensity. Whena52.4, the
reaction is very fast. At the same time~see Eq.~66!!, Peq
vanishes sinceJ0(2.4)50. At a53.8, the preexponentia
factor in the time-dependent part of the transition probabi
vanishes (J1(3.8)50). Thus, the reaction is terminated. Th
equilibrium constant is depicted in Fig. 3. WhenJm1

(a)50,

the reaction is shifted to the reactants. IfJm2
(a)50, the re-

action is shifted to the products. By changing the field inte
sity ~the value of the parametera), one is able to manipulate
the direction of the reaction. Case~b! of the single resonance
highlights one very important problem with the theory—t
validity of the theory. According to analytical solution~73!,
the parameterG0, defined by Eq.~75!, oscillates with the
field intensity. WhenJm0

is rather small~i.e., the reaction is
slow!, condition~1! is no longer valid. Furthermore, the op
posite inequality can occur. This means that slow modes
pear to be fast. Thus, according to Refs.@51,52#, the reaction
becomes mono-exponential. The exponential evolution
be described by the rate constant given by the follow
equation@51,52#:

G5
\D2

4
A p

~Ers1Er f !kT (
n52`

`

Jn
2~a!

3H expF2
~e2Ers2Er f 1n\v!2

4~Ers1Er f !kT G
1expF2

~e1Ers1Er f 1n\v!2

4~Ers1Er f !kT G J . ~76!

Hence, by changing the intensity of the field, one is able
change the character of the evolution of the reaction from
slow non-exponential to the faster mono-exponential dep
dence. The theory presented above is unable to describe
transition between these two limiting regimes.

For the single resonance case, the reaction is rather
sitive to the change of the reaction heat~see Fig. 6!. Accord-
ing to Eq. ~72!, the reaction heat can fit the resonance co
dition and, therefore, make the reaction effective
activationless.

A dependence of the reaction on temperature is one of
most important characteristics in chemical dynamics.
demonstrated in Fig. 7, the transition probability is almo
insensitive to temperature. Such a weak dependence can
lead an investigator who might interpret experimental data
accordance with a tunneling mechanism. Interestingly
similar phenomenon of ‘‘false tunneling’’ was found for re
actions in glasses@77#.

The equilibrium distribution of reactants~or product! is an
experimentally measurable quantity. As shown in Fig. 8,Peq
is extremely sensitive to the intensity of the field and t
reaction heat. The latter can bring the system to resona
while the former can change the direction of the reaction

Experimental observation of strong field effects in chem
4-10
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cal reactions of electron transfer can be an important s
towards understanding of the physics of opto-electronic m
lecular devices. Perhaps, long range electron transfer in
teins is one of the most promising candidates for observa
of such effects. Indeed long distances (15217 Å) for elec-
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tron tunneling are necessary in order to apply electric fie
with intensities below a breakdown threshold in dielectri
We believe that a protein contains strong slow degrees
freedom. The theory presented above can be impleme
for such systems.
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