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Driven electron transfer in an environment with slow and fast degrees of freedom
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Driven electron transfer in a polar medium with slow and fast degrees of freedom is studied in the frame-
work of a spin-boson Hamiltonian. Evolution dynamics is rigorously found whélT (a)) VEs /kT<1,
wherew; is the Debye cutoff frequency in the spectral function for the slow mdggsis the reorganization
energy of slow degrees of freedom, dnd'(a) is the reaction time dependent on the laser intensity parameter
a=puEq/hw. Herew andE, are the frequency and the amplitude ofw electric field, andu is the electron
dipole moment difference between the initial and final states. The master equation is derived for an arbitrary
driving force affecting both the transition matrix element and the potential energy. Gwredectric field, the
time dependent probability of staying at the product staiét), is shown to be strongly dependent on the field
intensity parametea: Py(a,t)~(I'm, m,t) /5 or Py(a,t)~ (' t) "5, double or single resonances,
respectively. Herd  is the reorganization energy of fast degrees of freedbmzm2~J2ml(a)+J§2(a), and
Fm0~ano(a), whereJ(a) is a Bessel function. By changing the parametesne is able to manipulate the rate
and direction of the reaction. Whe]fgo(a) is close to zero the reaction is slow. Hence, slow modes turn out
to be fast. This changes the character of the evolution dynamics from non- to mono- exponential decay,
respectively. For the double resonance, the equilibrium constant is studied with the field intensity. It is shown
that the reaction is almost insensitive to temperature. However, it strongly depends on the reaction heat, which
provides a condition for the resonance.
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I. INTRODUCTION wherew; is the Debye cutoff frequency in the spectral func-
tion for the slow degrees of freedoif, is the reorganiza-

Recent experimental studies of electron transfer dynamicgon energy of the slow degrees of freedom, dhd' is the
in solution[1—13 and proteing14—20 established ultrafast typical reaction time. It has been assumed that clear separa-
time scales in the regiort100 fs. For such fast reactions, tion between slow and fast degrees of freedom takes place.
one expects that nuclear relaxation processes become esséfpwever, this is not always so. There exists a coupling be-
tial. An ordinary description based on the transition stateaween slow and fast modes. Such a coupling is not consid-
theory [21-24, the variational transition state theof5—  ered in this work. In general, slow bath dynamics was stud-
27], the Kramers-Grote-Hynes approaf28—32, or non- ied by many authors: Chandler and Wolyng44,45,
adiabatic transition described by the Golden H38-35is  Carmeli and Chandlef46], and Coalsori47] were mostly
questionableg[36—-39 in the non-equilibrium environment. interested in thermodynamic properties. Coald@8,49
Relaxation dynamics of the bath modes should be taken intoonsidered a spectroscopic form of a spin-boson Hamil-
account. The bath relaxation can be considered by a fewonian. Evanst al. [50] numerically analyzed spectroscopic
different approaches. Marcus and co-workg39,40 pro-  data [5—11] of electron transfer in mixed-valence com-
posed a phenomenological picture of slow mode dynamicgpounds. As shown in Ref43], at longer times the transition
The Markovian description of the dynamical system relax-probability, P(t), for the activationless reaction can be de-
ation is valid for times longer than the correlation time of thescribed by the power law evolution:
bath. For shorter times a microscopic approach is necessary.
Hornbachet al. [41] employed a description based on a mi- P(t)~t Erf/Ers 2
croscopic spin-boson Hamiltonian for electron transfer in
slow solvents. For some solvents, both slow and fast modeghere E,; is the reorganization energy of the fast modes.
affect the electron transf¢42]. Consequently, dynamics be- Such a dependence is essentially non-exponential. Hence, the
comes essentially non-exponentiaB] under the following dynamics cannot be presented as a two exponential process

assumptions: either.
Recent theoretical studies of long-range electron transfer

driven by a laser present opportunities to manipulate a

“’_ﬁ E<1 (1) reaction—accelerating, decelarating, or even changing a di-
I VkT ™ rection of the transfer process. Indeed, as shown in[B&f,
the reaction rate exhibits giant resonances depending upon
the laser intensity. Different types of manipulation by a driv-
*Electronic address: yurid@uwyo.edu ing force were demonstrated in Ref§2—54]. Driven ET in
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a stochastic medium was investigated in Rg&&,56. Nu-  experimentally observed in some alcohols. For instance, ac-

merical methods were developed in R¢&7/—-59. Recently, cording to Huppert and co-workef42], solvation relaxation

electric field modulation of the transition matrix element hasin hexanolcan be approximated by two exponents with the

also been considergd0,61]. In this work, we continue to Debye relaxation times;=2 ps andrg=33.3 ps.

study the effect of a strong time-dependent electric field on As mentioned above, the electric field can decelerate the

electron tunneling in a polar solvent. However, we extendreaction. If the reaction rate becomes much smaller than the

the previous analysis to the case when both slow and fafdebye cutoff frequency, inequalit{l) is no longer valid.

degrees of freedom are presented in a solvent. Slow modes turn out to be fast. Consequently, the reaction
To describe microscopic the dynamics of the electron tunfreveals mono-exponential evolution.

neling, we employ the approach based on the spin-boson In this work we consider how a time-dependent electric

Hamiltonian[62—-64: field changes the dynamics of electron transfer in a polar
5 environment(e.g., solvent which contains both slow and
Ao EhA” 1.1 D Pic s 2 fast degrees of freedom. The paper is organized as follows:
SB= T 5 tA0KT S €0, T 5 = +Mwidi in Sec. Il we present the theory which allows us to derive a
master equation for the transition probability for the electron
N 1. s 3 to be in the donor state. In Sec. Ill we stugyt) for high
27z " 9Kk (3) temperatures and different values of the parameters. In Sec.

IV we discuss and conclude.
where the set of oscillatoik} of mass{m,} and frequency
{w} represents the slow and fast environmégi;} are cou- Il. A TIME-DEPENDENT PROBABILITY
pling constants in the electron-boson interaction, amslthe _ _
energy difference between the minima of the initial and final 1h€ most rigorous approach used to describe non-
electronic stategthe reaction heat The electronic state as- adiabatic electron transfer is based on an analysis of the

sociated with thé+) eigenstate ofr, (with eigenvaluer 1) problem in the framework of spin-boson Hamiltonian Eg.

shall be designated as the donor electronic state. The othg?)' The transmon probability can be found as an gxact fof'
mal expansion with respect to the value of a transition matrix

electronic base state is then the acceptor state. A transitio C . o )
between two states is due to the first term in the HamiltoniarﬁgementA [62], which, in our case, is modified by the driv-

with the transition matrix elememt. As usual51,52,64, we ing force (see functiorF, below) [64]

introduce an electric field into the Hamiltonian with the fol- w A2\ . . .
. . 2n 2
lowing term: P(t)= >, (__) > fdt%f dt2n—l"‘J dt,
n=0 2] =%y Jo 0 0
N 1 -
Hf:_EﬂE(t)UZ' (4) XF(tl,tz,...tzn;7]1,7]2,...’)7n;€,E), (6)
whereu is the dipole moment difference between the donorWhere
and acceptor states, ai(t) is the external electriflasey F=F,-F, F3-Fyg, 7
field. Thus, the final Hamiltonian is given by
n
H=Hggt+Hs. 5 Flzexp{—z SJ},
i=1

Experimentally, strong field effects can be observed in long

range electron transfer. Larger tunneling distances become n n

vitally important so that the breakdown threshold for the szexl{—z , E 7 Ml jk |
electric field in dielectrics is not exceeded. According to es- k=1 j=ktt

timations made in Ref$65—67, the breakdown threshold is n-1

about 16— 10" V/cm. Consequently, the electron tunneling F.=1] co X
range should be larger than 437 A [52,53. Thus, pri- S [y Tk

mary long-range electron transfer in bacterial photosynthetic

centers is a good candidate for the experimental observation n

of strong field effects in chemical dynamics. Indeed, the pri- F4Eco{z 77j((t2]-—tzj_l)e+V(t2j)—V(tzj_1)—on)},
mary ET is rather fast in order to satisfy condition rfly, =1

and the electron tunneling distance is larger than 15 (8)
—17 A [68]. Interestingly, there are some other materials
where an electron tunneling distance is even largdQ A
[69]. We assume that the environment for these reactions S=Qy(ty —ty 1)

contains slow modes. Thus, the incorporation of slow bath ) oA

dynamics into the consideration of driven electron transfer = o o _ o
becomes important. Here, one expects the electron transfer A= Qalty ~tai-1) + Qaltyj 1~ i) = Qalty ~ta)
kinetics to be non-exponential. Slow and fast relaxation were —Qa(ty—1—ta—1),

and
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Xik=Q1(tz; = tors1) + Qulty —1—to) = Qa(tyj —1ty) A
—>1, (19
—Qq(tyj—1—taks1)- 9 ¢

FurthermoreQ(t), Q,(t), andV(t) are defined as follows: and

1 (= J(w)+JI(w)
Q,(t)= ﬁfe dw% sin(wt), (10) Af<1. (20
wC

S . . .
P(w)+I(w) fiw The experiments of Huppert and co-workptg] indicate the
Qa(t)= _f de w? [1~cogwt)]cot 2kT)" existence of solvents with two relaxation times. Equations
(12) (19) and (20) allow one to compare the dynamics of the
coherent electron motion with relaxation of the slow and fast
t degrees of freedom. In the former case, the electron coher-
V(I)ZMJ' E(7)dr. (12)  ence frequency is much faster than the Debye cutoff fre-
0 . .
quency of the slow motion. For the fast modes, the opposite

HereJ%(w) andJ'(w) are the spectral densities of the slow cpndition takes place. According [62], inequality(20) jus-

; . tifies the non-interacting blip approximatidNIBA), which
nd f r f fr m, r i : ) ) . ) '
and fast degrees of freedom, respectivéig] results in exponential dynamics with the rate constant deter-

- (gi,f)Z mined by the Golden Rule expressi#2]. As in Ref.[23],
I (w)== 2 ﬁg(w—wﬁ*f), (13 we apply the NIBA only to the fast degrees of freedom.
2% myoy However, the slow bath approximation introduced in Ref.
£41] is employed to the slow solvent modes. The NIBA as-

J(w) can be expressed through the dielectric loss function o§ymes that the relaxation of the fast modes is so fast that the
slow and fast polar modesee, e.g., Ref§51,70): electron transitiongblips) between two electron levels are
o o ) not correlated in tim¢62]. Consequently, only the first term
35 (w)= mEst  IMeS(w)/[w]e® (w)]?] contributes to the functio\;; in Eg. (9)
> = ;
JO dolme® (w)/(v|e(w)|?) 1Sty — o 1)=Galts—ty 1) (21)
(14)

The same is true for the terfy in Eq. (9):

where the reorganization energy of the slow or fast modes is fast -
determined from the following equatidii1]: Q1 (g~ taj-1) =Calty —taj-1). (22

An analysis of the slow modes is differgdl,72. All terms

_ with different time intervals must be included. If the time of

w|esf(r,w)|? observation is much smaller than the relaxation time of the
(15 slow modes and much longer than the reaction tif®ee

inequality (1)), one can expand the functio®'°"(t) and

Here, ImeS'(r,0) is the imaginary part of the dielectric QS'°"(t) with respect to the small parametenf). Accord-
function, €>'(r,w) of the slow or fast modes, respectively. ing to Refs.[41,70,73 one finds that

Ime>f(r,w)

1 )
sf__— ,f 2
ES _MJ du|ADS (1) .fo do

ADSf(r)=D}'(r)-D§'(r) (16) Es
. N Qi =— 271,
is the difference between the induction vectors at the accep- hwg
tor and donor sitef71]. For the Debye spectrum, the dielec- (23)
tric loss function takes the following forfv1]: ESKTE )2
; Q3(t)= —= T—) ,
Ime>(w) _( 1 1 ol 0¥ w 0
|ef(w)? V€ €] 1+(wlwdh? where 7, is the blip relaxation time defined as follows:
€p ande,, stand for the optical and static dielectric constant, A
respectively;w 1/7 , where 7 Sf are the longitudinal 0= T—- (24
Debye relaxation tlmes of slow or fast polar dipoles. Slow EkT
and fast mode dynamics implies that , L
In the previous derivation, we have assumed ttatthe
S temperature is high
— <1, (18 .
ol wo<kT, (25
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and (b) J%(w) is described by the Debye spectral function A, should be comparable to the typical length of the blip,

(17). In approximation(23) the functionsS;, Aj, and Xjy
(defined by Eqgs(9)) are now quadratic functions of time:

2
SS_(tzj _tzj—l)z _7
(. 2 -2
70 7o
s _ Tk
k= (tj = taj 1) (tax—tok—1)=—-, (26)
7o 70
S S S S

s r@Wc _ or% i
=7 (g~ - 0) (tar s~ ta) = —— 78, (= K)

where
7=t~ g1,

(27)

Sk=1Tok+1— Lok

are the lengths of thgth blip andkth sojourn, respectively.

CombiningQif2 from Egs.(21), (22), and(26), and substi-
tuting them into the total expression f&, A, and X,

one obtains the following expression for the time-depende

probability difference:

- AZ\" t ton t
P0=3 (-5 I, [l aten - [ o
{tn =1 Jo 0 0

n=0
n Ai
XeX[{ _2 GZ(t2j_t2jfl)__2
=1 70
Xcog(e—E)A1— 171Gyt —t1)]

n—-1 n
x 1 COS{chrAkHSkf > 7;G1
k=1 j=k+1

X(tg—tyj-1) 0 —1x| (28)

where A is defined as follow$72]:
n

Akzgk 77] Tj .

(29)
({mj==1}).

For short times the following condition is valid:
wCErAk+1Sk< 1. (30)

Equation(30) is equivalent to inequalityl) when the param-
etersA ., ands, are estimated as follows:

== (31

(32

79, While s, must be smaller than the reaction time. This time
is rather short, since the reaction is considered to be fast
relative to the relaxation time of the slow modes. Condition
(30) essentially simplifies calculations of serig8).
To find the multiple sum over the Ising indiceg=+1
we exploit the following integral representation:
2 %
7o

m) -

Xexp(—xz)cos(z—x E anj).
70 ]
(33

This integral transformation allows one to substitute the
Gaussian exponent by a linear one. The time dependent
probability, P(t), can be presented in the following form:

o0

1
Pl)=—=| dxexp —x?)P(x,t),

N

(34)

r\svhere the partial probability?(x,t), is defined as follows:

P(X,t)= >

n=0

AZ\" t ton ty
_?) > f dthJ dt2n71"'f dty
n==1 Jo 0 0

n
X exp( —le Go(toj—ty; 1))

-

n

(x)
122 7j GT(tzj —ty-1) +V(ty)

e(X)
+V(ty-1) |+ m T(tz_tl)+v(t2)_v(t1)
n—-1
~Gu(t=ty) | | I, cod nBilty ~tac- 1)l (39

Here the random reaction heat stands for

2hX
e(X)=—+€e—E. (36)
7o
In Eq. (35) we have used the parity of the Gaussian distribu-
tion. Thus, cosines withtx and —x contribute equally. In
Eq. (35 we have chosen cosine withx.

By making use of the following transformation

n
z CO{AZ niT|= E H COS:A’Y]J'TJ']
{m==1} j {nj*1} i=1
n
=2"[ cosgAr), (37)
i=1

one obtains the following series f&(x,t):
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~ A2\" [t ton t >
p(x,t)zz S — fdth 2 dth—l"'fzdtl P(x,)\)=J dtexp(—At)P(x,t). (46)

A=0 2 0 0 0 0

n Hence the Laplace imag®(x,\), can be determined from
X Hl 9(X;taj,t25-1) the following equation:

j=

" AP(XN)—1 AZdet n M)Jtldt
XN)—1=—— exp—

+h(X;t2,t1)j:1_[2 g(X;ty; ,tzj—l)} (38 2i Jo 1 V)e 2

Xexd —Ga(ty— 1) [si G4 (t—ty)]

p( . ( €(x)
exp 1 —%—~+mw
g(X;ty; - 1) =exfd — Ga(ty;—ty-1)]

AZ (=
€(X) X(t;—ty) +inwt )—c.c. ——J dt
xcos{T(tzj—t2j—1)+V(tzj—V(tzj—1)] v ! 2Jo

where the functio(x;ty; ,t5; 1) andh(x;ty; ,t5;—41) are de-
fined as follows:

X X In(@)dnim(@)

n,m=—o

X co§ Gy (tp—tyi-1)], (39) X exp( — \tp) f:dtzexp[—ez(tl—tz)]
and o
h(Xitos Loy ) =€XH — Golty; —to;1)] XCogGi(ti—t)]X 2 In(@)In:m(@)
XSir{?(tZi —tgj-1) + V(tg = V(tz-1)] X ex;{ i (%X) + mw) (t,—t,)+ inwt1>
XSiN[Gy(ty—ty 1)]. (40)
+c.c|P(xty). (47

Series(38) is equivalent to the solution of the following

integro-differential equation for the partial probability den- The structure of integra$#7) can be presented in the follow-
sity:

ing way:
dP(x,t) [t = ty F(AN*xinw)
dt —A foh(x’t’tl)dtl JO dt;exp(—Aty) JO dtzF(tl—tz)Zm
t (48)
—Azf g(x;t,ty) P(x,ty)dt; . (41)
0 or
As in Refs.[51-53, we only study acw electric field: fmdtlexp(—)\tl)ftldtzG(tl—tz)P(x t,)
0 0
E(t)=Eycoq wt). (42
0 =G\ £inw)P(X,\*inw). (49)

Thus, V(1) defined by Eqi(12) is given by Form#0 and\—0 (a long time asymptotj¢c one can safely

V(t)=asin(wt), (43) neglect\. Indeed integra(48)
where the intensity parametaris defined as follows: det exp( — At )Jtldt F(t—t,)= M (50)
0 1 1 0 2 1 2 +inw
_ HEo s . o
a= T (44) is finite. Being multiplied by the small factor
A 2
To find the solution of Eq(41) with field (42)—(43), one (Z) , (51

employs the following useful identit}y73]:

w the function in Eq.(50) provides a negligible contribution
- — ; compared to unity in Eq47). Thus, the only term which is
exfasinot)] mzx In(@)eXpimot). 49 essential in this equation is the one witl=0. A similar
analysis can be made for the second integral term in(4eq).
We seek for the solution of Eq41) by making use of the (see also Eq(49)). One can show, by employing iterations,
Laplace transform: that all terms withP(x,A *inw) are only corrections of or-
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der (A/w)? to P(x,\). Thus, keeping all the terms witim
=0, we obtain the following solution folP(x,\):

1-h(x,\)/\

PN =S gmxn)

(52

whereh(x,\) andg(x,\) are given by

[’

h(x,\)=A2 >, Jﬁa)[ﬁﬂexq—xt—GﬂU]
n,m=—o 0
L e(x) | .
X sin Tt si G4(t)]sin(nwt), (53
gx,\)=A% > Jﬁ(a)fxdtexp{—)\t—Gz(t)]
n,m= —o 0
€(X)
Xco{Tt cog G4(t)Jcognwt). (549
For small\ (or long times
h(x,A—0)=hg(x),
9(X,A—0)=go(X). (55)
ConsequentlyP(x,t) is found to be
_ he(x) o]
P(x,t)= go(X)+ 1+ 3o exg —go(x)t]. (56

Employing the identity 73]

oo

> Pa)expinw)=J, 5

2asin w—t) , (57)

one can collect serie®3) and (54), resulting in the follow-
ing equations fohy(x) andgq(x):

ot
2a sin—) exgd —At—Gy(1)]

h(x,x)=A2f dt Jo
0 2

<

7 t

X sin sif G4(t)]sin(nwt); (58

o t
g(xX\) = AZJ dtd,| 2a sin%) ext — AMt—G,(1)]
0

e(X)
X CO Tt

cog G,(t)]Jcog nwt). (59

PHYSICAL REVIEW E63 016104

o

1 1 ,
Py(t)=5[1+ P(t)]=m wdxexq—x )
go(X) —ho(X)  go(X)+ho(x)

exd —go(X)t]|,

(60)

9o(X) go(X)

where e(x), hg(x), andgg(x) are determined by Eq$36),
(58), and(59), respectively.

Equation (60) is the general solution for the transition
probability when both slow and fast degrees of freedom are
taken into consideration. In Sec. Il we shall study particular
solutions of Eq.(60) at high temperatures.

Ill. A HIGH TEMPERATURE LIMIT

In this section we shall analyze some important particular
solutions of Eqs(58)—(60), restricting ourselves to a high
temperature limit for both degrees of freedom:

hoS'<kT. (61)
As usual(see Refs[41,70,73), functionsG,(t) and G,(t),
defined by Eqgs(21) and (22), can be expanded into the
Taylor series. Keeping only linear terms f@r (t) and qua-
dratic terms forG,(t), one obtains

Erf
Gl(t)ZTt,
E, kT
G,(t)= 22 2, (62)

Thus, the integrals in Eq$58) and (59) become Gaussian,
and therefore can be calculated exactly:

(R .
ho(0 =7\ g kT, 2, (@)

(e(X)—Eyf—nhw)?
x| €XH -~ 4E, KT

(e(X)+E;—nhw)?
ex 4E, kT

hAZ2 T ~ )
o=\ Erfan’mE_w Ja(a)

y (e(X)—E;;—nhiw)?
ex 4E, kT

(e(X)+E;—nhw)?
Tex 4E, KT

] ) (63

] . (64)

The partial rate constangy(x), given by Eq.(64), is a sum

The final expression for the time-dependent probability ofof the infinite number of transitions with different activation
finding the electron at the donor state takes the followingenergies in which the reaction heats are increased or de-

form:

creased by an integer number of the photon enargy. The
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probability of each channel being turned on is determined by 30
the factorJﬁ(a). This coefficient is an oscillating function of
a. The Bessel function],,(a), can vanish at some particular 25
values of the intensity parametar uE,/% o, the roots of
the nth-order Bessel functiofsee Ref[73]). The ability to -+ 20
change the channel probability becomes extremely importans”
for manipulation, since theffective channelthe channel 2 15
with the least activation energjan be turned off. In this <
situation the partial rate constant is significantly decreasec j 10
by many orders of magnitudsee Ref[51]). i
We consider the two particular cases of resonances whei sk
two or one exponents in seriéd3) and(64) vanish, resulting |
in the largest contribution to the series: 0 . ; . .
(a) Let the resonance condition for two exponents take 0 2 4
place (i.e. there are simultaneous resonances for both for- a
ward and backward reactive channels

6
= pE /ho

FIG. 1. Dependence dTmlmz(a) upon the field intensity param-

etera is given form;=—1 andm,=0.
e—E,.—E, =mfio, g L 2

(65

JH ()
€— Ers+ E,f=m2ﬁw. I:)l(t)2 M2

In(@)+30 (2)+37 (2)
Conditions(65) select only two exponents from infinite se-

ries (63) and (64). Other exponents in this series are expo- szl(a) Ee
nentially small. Thus, the partial probabilify; (x,t) takes a t o NN Tyt
; . Jo (a)+J; (a) rf
simpler form: my m,
Erf Erf/Ers E.JE
J2 (a) J2 (a) < eE (L m, )~ s, (69)
Pi(X,t)= = : > + : > °
Jml(a)+‘]mz(a) Jml(a)+sz(a) This solution is valid provided43]
E
_ _y2's E
xex;{ tFm, m, exi{ X Erf”' (66) E—:’(levmzt)>1. (70)
wherel'y, m.(a) is defined by the following equation: In accordance with Eq67), I', m,(a) is strongly affected
by the field intensity. The dependence[q#]l,mz(a) onais
Cmom Ero[Jrzn (a)+32m (a)] shown in Fig. 1.Fm1’m2(a) never vanishes, although it sig-
10772 1 2

nificantly decreases faa>2. If Jrzn (a)=0 (i.e., the back-
1

(67) ward reactive channel is turned off by the figl®,(t) be-
comes completely independent of tinigee Fig. 2 When
Jﬁ]z(a)zo (for my,=0, a=2.4); (i.e., the forward reaction is

Finally, in order to obtain the transition probability, integral switched ofj, the equilibrium distribution is shifted to the

(60) overx must be taken. However, sineedepends orx,  products. ForJrznl(a):O (m;=-1a=3.4), the reaction is

resonance condition5) are not exact for different. We  gpifieq to the reactants. At=1.45 the forward and back-

assume that the mismatch due to the fluctuatiorisfsmall yarq reactions contribute equally; i.e., the electron transition
compared tiw, i.e. behaves like a symmetric reaction.
It is important to study the dependence of the equilibrium
ho distribution upon the field intensig. According to Eq(69),
>1. (68)  the equilibrium rate constant is defined in the following way
ErskT [74,75:

_ﬁAz T 2 2
= m[ m (8)+J5 (a)].

If condition (68) is satisfied, the resonances are still sharp. P,(a) anl(a)
Thus, one can safely neglect other exponents in E&{. Pem s mltee=3 .
and (64), which results in the partial transition probability P1(a) I, (@)
described by Eq(66). To take Gaussian integré&0) over

the variablex, we employ the saddle point approximation According to Eq(71), I'¢4 varies from 0 toe, depending on
used in Ref[43]: the values of the parameter As shown in Fig. 3, when

(71
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FIG. 2. Time dependence of the probabilRy(t) of an electron FIG. 4. Time-dependence of the transition probability for the
remaining at the donor state is presented for different values of theeaction satisfying double resonance condit{66). The solid line
field intensity. For E,;=E,;=0.5 eV, €=0, T=300 K, fiw is the numerical value of the integral in E§Q); the dashed line is
=1 eV, andl'y=3x 10" s7!, the reaction dynamics is sensitive the long time asymptotic described by Ef9). The parameters are
to the field intensity. chosen to beéE;;=E,;=0.5 eV,a=1.9, e=0, T=300 K, m;=

-1, my=0, Aw=1 eV, andl'(=3%x10' s 1,

Jrznl(a)zo, the reaction is shifted to the reactants. If

L . Inequality (72) allows one to neglect all other exponents in
Jrznz(a)=0, the reaction is shifted to the products. quality (72) 9 P

series(63)—(64) except the resonance term. As in cdag
It is always useful to compare analytical soluti®®9  we exploit the saddle point method for the calculation of
with numerical calculations of integré0), with ho(x) and  integral (60) over the auxiliary variablex [43]. As a result,
go(x) determined by Eq963) and(64). The results are de- the transition probability is given bj43]
picted in Fig. 4. It is clearly shown that a perfect match
occurs att=2x10"1! s. As expected, the asymptotic ana- \/ Ers
lytical solution fails at earlier times. Pa(t)=/2/In E—rfl“mo(a)t
(b) Now we consider the single resonance case when

resonances occur only for the forward reaction, while the Eyp | Eri/Ers _
S o X (T (a)t) Bt /Brs. (73)
backward reaction is suppressed by a small activation expo- eE. Mo
nent:
This solution is true providef#43]
e—E,S—E,f=m0ﬁw, E
(72) E—r:(l“mo(a)t)>1. (74)
r
|€_ Ers+ Erf - mlﬁw|> \/ErfkT' (m(ﬁ& ml).
HereFmO(a) stands for
5()"'I"I"'I"'I 2
Fmo(a)EFoJmo(a), (75)
or S 7 where T, is defined by Eq.(67). If J%(a)=0, then
1_ I'm,(8)=0. This might contradict inequality74). Conse-
0r M= 7 quently, solution(73) is invalid. However, there is another
(3ot 1 reason for the theory presented above to be questionable at
20k 4 small I'y, (a). Validity condition (1) can be violated for
small reaction rates. For this case, the inequality opposite to
(1) takes place. The slow modes now become fast, relative to
10 T the reaction time. Consequently, the reaction is mono-
exponential. The exponential evolution was previously stud-
08 L L L . A ied in Refs[51,52. Thus, by changing the field intensity, we

can even change the character of a time dependence. When
the intensity parameter is far from a zero of tingth-order

FIG. 3. Dependence dfq(a) upon the field intensity param- Bes_sel fur_lction, the dyr_lamics is again non-exponential. If
eterais given form;=—1 andm,= —0. The equilibrium constant the Intensity parameter Is close to one of the zeroes of the

or the direction of the reaction can be manipulated by changing théngth-order Bessel function, the reaction dynamics becomes
amplitude of the driving force. essentially mono-exponential. A 3D plot Bf(t) on timet
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FIG. 5. 3D picture of evolution for the transition probability in
the case of single resonan¢€2). The decay with time becomes

extremely fast when the resonance Bessel functioms<(—1) al

rather close to the maximaa€2.4,5.5,87 . ..). Thereaction is

re

terminated at zeroes of the resonance Bessel functionniger .
—1,a=3.8,7.0,10.2. ... Thevalues of the parameters are chosenagain but now formy=0(Jy(2.4)=0). Consequently, the

to beT'=3.7x10" s7%, Aw=1 eV, T=300 K, my=—1, E
=0.66 eV,E,=0.33 eV, ande=0.

and the intensity parametaris presented in Fig. 32,(t)

strongly dependent upon the intensity parameter. The time
decay becomes extremely fast when the resonance Besgg[nperaturesP
function (my= —1) is approximately close to the maxima of of P
the Bessel functiong=2.4,5.5,8.7. . .). Thetransfer is ter-
minated at the zeroes of the resonance Bessel function. F§PUNCce
my=—1, the values of the intensity parameter aae

=3.8,7.0,10.2. . ..

The reaction probability is very sensitive to the reaction

rf

is
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FIG. 7. Temperature dependence of the transition probability
with the parameters close to the double resonance condiies
Eq. (65)). The values of the parameters are the same as in Fig. 2
excepta=1.8, Aw=0.8 eV. The parametdr, varies with tem-
perature in accordance with definitio(&7) and (75).

fast at sucha’s when Jéo(a) is close to its maximdhere
my=—1). For e=—1, the resonance condition is satisfied

electron transfer is terminated.

The temperature dependence of the transition probability
is one of the most important measurable characteristics. This
dependence, shown in Fig. 7 at the fixed values of tiine (
=2.89 ps), turns out to be very weak. For a broad range of
1(t) changes by less than 1%. The minimum
1(t) can be qualitatively explained in the following way:
if the temperature is small, the fluctuationsxodire less pro-

d ¢/%=1/JE,kT in Eq. (36) is large. Therefore,

the resonance discrepancy cannot be eliminated by small
fluctuations ofx. For a nonvanishing activation energy a di-
rect temperature dependence is true. At higher temperatures,

heat, e. Figure 6 demonstrates such a dependence. Indeel€: T =280 K, it becomes possible to eliminate the activa-

when resonance conditiofV2) is satisfied, the reaction is

tion mismatch. Hence, the resonance can be reached, and the
reaction becomes activationless. For this type of reaction, the
inverse temperature dependence is vélice preexponential

' ] factor ingg(x)).
________________________________________________ B Besides the time-dependent part Bf(t), we are inter-
.............................................................. ested in the equilibrium distribution of the reacta(dse the
E;=0.66eV 7] first term in integrand60)). Since the system is far from
B ,=033eV ] equilibrium it is apparent thaP.q(€,a) should essentially
ho=10ev = differ from a Gibbs’ distribution. There are two possible rea-
Ty j:"lo s ] sons:(a) non-equilibrium dynamics of slow modes, afij a
\a\:\' ] time dependence of the driving force. Figure 8 demonstrates
__.__.__\::::_:::: the dependence d¥, on the reaction heat and the inten-
k sity parameten. As expected, this dependence is essentially
. non-linear. The equilibrium distribution of reactants changes
in the whole range of values from zero to of.e., products
— _10 to reactants At fixed values ofe, P(¢€,a) is an oscillating
1.0x10 1.5x10 .
time (s) function ofa.
FIG. 6. Time dependence of the transition probability for the IV. DISCUSSION AND CONCLUSIONS

reaction for the case of single resonafi¢®) at the different values
of the reaction hea¢. a=2.4 while the values of the other param-

eters remain the same as in Fig. 5.

In this work we have studied an effect of an intensive
driving force on the transition probability of electron transfer
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—l"o(J2 (a)+J (@)) (see Eg.(67). The dependence of

1,O(a) on the intensity parameteris presented in Fig. 1.
The value ome1m2 decreases a=2. As shown in Fig. 2,

I

0.8 \\\\ ‘ ' / " ’, P(t) is very sensitive to the field intensity. Wher 2.4, the
l ”” ’ /I Il \! reaction is very fast. At the same tinsee Eq.(66)), P
o \\ II/// \ vanishes sincely(2.4)=0. At a=3.8, the preexponential
. or \\\ \\ // l ‘ factor in the time-dependent part of the transition probability
= ‘\ vanishes {,(3.8)=0). Thus, the reaction is terminated. The
0.q] “ \‘ equilibrium constant is depicted in Fig. 3. Whag, (a)=0,
\\‘s the reaction is shifted to the reactantsJ,l,fz(a)=0, the re-
02 ‘5 “ action is shifted to the products. By changing the field inten-
I W sity (the value of the parameta)), one is able to manipulate
0.q the direction of the reaction. Caée of the single resonance

highlights one very important problem with the theory—the
validity of the theory. According to analytical solutidii3),
= the parametet’, defined by Eq.75), oscillates with the

FIG. 8. 3D picture of the equilibrium distribution of reactants field intensity. WhenJmO is rather smalli.e., the reaction is
depending on the reaction heat,and the field intensitye. The  slow), condition(1) is no longer valid. Furthermore, the op-
value of the parameter aB,=3.7x10" s, Aw=1 eV, E; posite inequality can occur. This means that slow modes ap-
=0.66 eV,E,=0.33 eV, andT=300 K. pear to be fast. Thus, according to Réfsl,52), the reaction
becomes mono-exponential. The exponential evolution can

in a bath with well separated slow and fast degrees of freebe described by the rate constant given by the following

dom. Such separation can take place for some alcqiéls equation[51,52;
(e.g.,hexana). The electron dynamics has been analyzed in

the framework of spin-boson HamiltonidB), when condi- e ﬁAZ 2 3
tion (1) 2w/ (I'(a)) VE;s/kT<1 is imposed. In fact, one - (E/s+ Erf)an__x (@)
implies that the reaction is rather fast, much faster than re- 5
laxation of slow degrees of freedom. The expression for the « [ ex;{ _ (e-Es—Etnho)
time-dependent probability of the electron staying at the ini- 4(E;stE)KT

tial state(see EQ.(60)) has been rigorously derived for an 5
arbitrary electric field, reaction heat, and temperature. The +exr{— (etEstEtnho)
time-dependent probability is asymmetric to the bare energy 4(E,s+Es)KT
bias, €. This effect is due to the fact that slow degrees of

freedom are far from equilibrium. The expansionQs°*(t) Hence, by changing the intensity of the field, one is able to
andQ3'"°*(t) in Eq. (23) with respect to the small parameter change the character of the evolution of the reaction from the
(twy) is the main assumption of the theory. Consequentlyslow non-exponential to the faster mono-exponential depen-
we have suggested that the relaxation time of slow degrees dience. The theory presented above is unable to describe the
freedom is much larger than the observation and reactiotransition between these two limiting regimes.
times. This approximation implies that slow degrees of free- For the single resonance case, the reaction is rather sen-
dom will never reach equilibrium during the time of obser- sitive to the change of the reaction hésee Fig. 6. Accord-
vation; they are frozen. Even when the electron transfer isng to Eq.(72), the reaction heat can fit the resonance con-
completed, the slow mode dipoles remain directed towardlition and, therefore, make the reaction effectively
the initial position of the electron. Apparently, the effective activationless.
initial energy should be corrected to the value of the solva- A dependence of the reaction on temperature is one of the
tion energy of the slow modds,s, while the energy of the most important characteristics in chemical dynamics. As
acceptor state remains unchanged. Due to solvation effediemonstrated in Fig. 7, the transition probability is almost
[74—74, only for the initial electron state does the systeminsensitive to temperature. Such a weak dependence can mis-
become asymmetric te. lead an investigator who might interpret experimental data in
The main analysis has been made for high temperatureaccordance with a tunneling mechanism. Interestingly, a
In particular, we have studied two important cases of resosimilar phenomenon of “false tunneling” was found for re-
nances(a) the double resonance with condititb); and(b) actions in glasser7].
the single resonance described by condit{@g). For both The equilibrium distribution of reactantsr producj is an
cases, the long-time asymptotic analytical solutions havexperimentally measurable quantity. As shown in FigP?
been found. For cad@), the time dependent probability con- is extremely sensitive to the intensity of the field and the
sists of the two parts; the equilibrium probabilPy, and the  reaction heat. The latter can bring the system to resonance,
time-dependent part itself. The latter, according to &§),  while the former can change the direction of the reaction.
is proportional to I‘mlmz(a)t)*Erf’Ers, where lemz(a) Experimental observation of strong field effects in chemi-

] . (76)
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cal reactions of electron transfer can be an important stefron tunneling are necessary in order to apply electric fields
towards understanding of the physics of opto-electronic mowith intensities below a breakdown threshold in dielectrics.
lecular devices. Perhaps, long range electron transfer in prdA/e believe that a protein contains strong slow degrees of
teins is one of the most promising candidates for observatiofreedom. The theory presented above can be implemented
of such effects. Indeed long distances {15 A) for elec-  for such systems.
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